# SHRI VENKATESHWARA UNIVERSITY



**EVALUATION SCHEME & SYLLABUS** 

### **M.TECH Power System Part Time**

(Two Years Post Graduation Programme) IV SEMESTER

(w.e.f. 2019-20)

## SCHOOL OF ENGINEERING & TECHNOLOGY

|      | M.TECH<br>Power System<br>Part Time<br>SEMESTER-IV |                                                              |         |   |   |                   |    |       |                     |    |       |        |    |
|------|----------------------------------------------------|--------------------------------------------------------------|---------|---|---|-------------------|----|-------|---------------------|----|-------|--------|----|
| SI.  | Subject<br>Codes                                   | Subject                                                      | Periods |   |   | Evaluation Scheme |    |       | End<br>Semeste<br>r |    | Total | Credit |    |
| 110. |                                                    |                                                              | L       | Т | Р | СТ                | TA | Total | PS                  | TE | PE    |        |    |
| 1    | WPS-<br>401                                        | Digital<br>Protection of<br>Power System                     | 3       | 0 | 0 | 20                | 10 | 30    |                     | 70 |       | 100    | 3  |
| 2    | WPS-<br>411                                        | Power Electronics<br>Applications to<br>Power Systems<br>Lab | 3       | 0 | 0 |                   |    |       |                     |    |       | 50     | 3  |
| 3    | WPS-<br>043                                        | Power<br>Quality                                             | 2       | 0 | 0 | 20                | 10 | 30    |                     | 70 |       | 100    | 2  |
|      | WPS-<br>421                                        | MINI<br>PROJECT                                              | 0       | 0 | 4 |                   |    |       | 50                  |    | 50    | 100    | 2  |
|      |                                                    | Total                                                        |         |   |   |                   |    |       |                     |    |       | 350    | 10 |
|      |                                                    |                                                              |         |   |   |                   |    |       |                     |    |       |        |    |

| Code     | Course Name                        | L-T-P | Cr. |
|----------|------------------------------------|-------|-----|
| WPS -401 | Digital Protection of Power System | 3-0-0 | 3   |

**Course Objectives:-**Students will be able to:

- Study of numerical relays
- Developing mathematical approach towards protection
- Study of algorithms for numerical protection

| Unit<br>No. | Content                                                                      |
|-------------|------------------------------------------------------------------------------|
| 1           | Evolution of digital relays from electromechanical relays.                   |
| 1           | Performance and operational characteristics of digital protection.           |
| 2           | Mathematical background to protection algorithms.                            |
| L           | Finite difference techniques.                                                |
|             | Interpolation formulae.                                                      |
|             | Forward, backward and central difference interpolation.                      |
|             | Numerical differentiation.                                                   |
| 3           | Curve fitting and smoothing.                                                 |
| 5           | Least squares method.                                                        |
|             | Fourier analysis.                                                            |
|             | Fourier series and Fourier transform.                                        |
|             | Walsh function analysis.                                                     |
|             | Basic elements of digital protection.                                        |
|             | Signal conditioning: transducers, surge protection, analog filtering, analog |
|             | multiplexers.                                                                |
| 4           | Conversion subsystem: the sampling theorem, signal aliasing.                 |
|             | Error, sample and hold circuits, multiplexers, analog to digital conversion. |
|             | Digital filtering concepts.                                                  |
|             | The digital relay as a unit consisting of hardware and software.             |
| _           | Sinusoidal wave based algorithms.                                            |
| 5           | Sample and first derivative (Mann and Morrison) algorithm.                   |
|             | Fourier and Walsh based algorithms.                                          |
|             | Fourier Algorithm: Full cycle window algorithm, fractional cycle window      |
|             | algorithm.                                                                   |
|             | Walsh function based algorithm.                                              |
| 6           | Least Squares based algorithms. Differential equation based algorithms.      |
| J J         | Traveling Wave based Techniques.                                             |
|             | Digital Differential Protection of Transformers.                             |
|             | Digital Line Differential Protection.                                        |
|             | Recent Advances in Digital Protection of Power Systems.                      |

#### Suggested reading:

- A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009.
- A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999.
- Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006.
- S.R. Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014.

**Course Outcomes:** Students will be able to:

- Learn the importance of Digital Relays
- Apply Mathematical approach towards protection
- Learn to develop various Protection algorithms

| Code     | Course Name  | L-T-P | Cr. |
|----------|--------------|-------|-----|
| WPS -421 | Mini Project | 0-0-4 | 2   |

| Code     | Course Name                                            | L-T-P | Cr. |
|----------|--------------------------------------------------------|-------|-----|
| WPS -411 | Power Electronics Applications to Power Systems<br>Lab | 0-0-4 | 2   |

| S. No. | Experiment                                                   |  |  |  |
|--------|--------------------------------------------------------------|--|--|--|
| 1      | Write A Program For Best First Search                        |  |  |  |
| 2      | Write A Program to Generate the output for A* Algorithm.     |  |  |  |
| 3      | Write a Program To Show the Tic Tac Toe Game for 0 and X.    |  |  |  |
| 4      | Write A Program For Expert System By Using Forward Chaining. |  |  |  |
| 5      | Comparing the Search Methods                                 |  |  |  |
| 6      | Implement the Greedy Search Algorithm                        |  |  |  |
| 7      | Implement the min-max Algorithm                              |  |  |  |
| 8      | Adding a Heuristic                                           |  |  |  |

| Code     | Course Name   | L-T-P | Cr. |
|----------|---------------|-------|-----|
| WPS -043 | Power Quality | 3-0-0 | 3   |

**Course Objectives:** -Students will be able to:

- Understand the different power quality issues to be addressed.
- Understand the recommended practices by various standard bodies like IEEE, IEC , etc on voltage& frequency, harmonics.
- Understanding STATIC VAR Compensators

| Unit No. | Content                                                                                                                                                                                                                                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Introduction-power quality-voltage quality-overview of power quality<br>Phenomena classification of power quality issues-power quality measures<br>and standards-THD-TIF-DIN-C message weights-flicker factor transient<br>phenomena-occurrence of power quality problems power acceptability<br>curves-IEEE guides, standards and recommended practices. |
| 2        | Harmonics-individual and total harmonic distortion<br>RMS value of a harmonic waveform-<br>Triplex harmonics-important harmonic introducing devices-SMPS Three<br>phase power converters arcing devices saturable devices-harmonic<br>distortion of fluorescent lamps-effect of power system harmonics on<br>power system equipment and loads.            |
| 3        | Modeling of networks and components under non-sinusoidal conditions<br>transmission and distribution systems.<br>Shunt capacitors-transformers-electric machines-ground systems loads<br>that cause power quality problems power quality problems created by<br>drives and its impact on drive.                                                           |
| 4        | Power factor improvement- Passive Compensation<br>Passive Filtering , Harmonic Resonance<br>Impedance Scan Analysis- Active Power Factor Corrected Single<br>Phase Front End, Control Methods for Single Phase APFC<br>Three Phase APFC and Control Techniques, PFC<br>Based on Bilateral Single Phase and Three Phase Converter                          |
| 5        | Static VAR compensators-SVC and STATCOM Active Harmonic<br>Filtering-Shunt Injection                                                                                                                                                                                                                                                                      |

|   | Filter for single phase, three-phase three-wire and three-phase fourwire   |  |  |  |  |  |
|---|----------------------------------------------------------------------------|--|--|--|--|--|
|   | Systems d-q domain control of three phase shunt active filters             |  |  |  |  |  |
|   | uninterruptible power supplies constant voltage transformers series        |  |  |  |  |  |
|   | active power filtering techniques for harmonic cancellation and isolation. |  |  |  |  |  |
|   | Dynamic Voltage Restorers for sag, swell and flicker problems.             |  |  |  |  |  |
| 6 | Grounding and wiring introduction. NEC grounding requirements-reasons      |  |  |  |  |  |
| 0 | for grounding typical grounding and wiring problems solutions to           |  |  |  |  |  |
|   | grounding and wiring problems                                              |  |  |  |  |  |

#### **Suggested reading:**

- G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007
- Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000
- J. Arrillaga, "Power System Quality Assessment", John wiley, 2000
- J. Arrillaga, B.C. Smith, N.R. Watson & A. R.Wood ,"Power system Harmonic Analysis", Wiley,1997

**Course Outcomes:** Students will be able to:

- Acquire knowledge about the harmonics, harmonic introducing devices and effect of harmonics on system equipment and loads.
- To develop analytical modeling skills needed for modeling and analysis of harmonics in networks and components
- To introduce the student to active power factor correction based on static VAR compensators and its control techniques
- To introduce the student to series and shunt active power filtering techniques for harmonics.